LESSON 2 – GEOLOGICAL DATA COLLECTION and STEREOGRAPHIC PLOTTING

Learning Outcomes -

- List important geological parameters of discontinuities;
- Plot and analyze structural orientation (stereonet) data.

Range of rock mass characteristics.

Scale

Pervasive discontinuities Favorably oriented

Strong rock widely spaced joints.

Definition of Geological Terms

- Standard Definitions/Procedures Necessary for:
 - Consistency and Compatibility Between Different Data Collectors
 - Facilitate Communication Between Different Parties
 - Quantitative Basis for Engineering Evaluation and Analysis
 - Completeness in Data Collection

Definition of Discontinuity Parameters

Figure 2-2 Page 2-6

A. - Rock Type

- Deere and Miller
- Colorado School of Mines Quarterly (Russell B Travis)

B Discontinuity Type

- Contact (Continuous and Sometimes Low Shear Strength e.g. Weathered Paleosurface Dipping into Cut)
- Fault/Shear (Continuous, Potentially Low Shear Strength)
- Joint (Cooling in Basalt, Tectonic Effects Sedimentary/Igneous)
- Bedding (Sedimentary Layering)

B Discontinuity Type (cont'd)

- Flow Banding (Igneous Flows; May Not be Weakness)
- Foliation/Schistosity/Cleavage (Metamorphic Layering)
- Vein (Includes "Healed Joints" May Not be Weakness)

Joints are controlling discontinuities

Bedding is controlling discontinuity

140, NC/TN

C Discontinuity Orientation

- Dip Angle of Steepest Inclination of Plane, Measured Below Horizontal (two digits 00 to 90)
- Dip Direction (Dip Azimuth) Azimuth of the Line of Dip (three digits 000 to 360)
- Strike Azimuth of a Horizontal Line (90 Degrees to Dip Direction) - Unsuitable for Rock Slope Engineering

Definition of Dip, Dip Direction, Strike north

Planar Features

Structural Compass

D Discontinuity Spacing

Measure True Spacing in Surface Mapping Range:

Extremely close spacing (<20 mm)
Extremely wide spacing (>6000 mm)

Line Mapping or Coreholes: Use Terzaghi Correction for True Spacing

True and Apparent Spacing

Extremely close foliation spacing

Will strongly influence rock mass:

- strength
- deformability
- permeability
- excavatability

E Persistence

- Document Visible or Inferred Length
 - Range:

```
Very low (<1 m)
Very high (>20 m)
```

- Document Termination of Joints (0, 1, 2)
- Statistical Estimates of Length Distribution (e.g. Pahl, page 2-8)
- Persistence cannot be Measured in Core

Measurement of Persistence

Persistence of family of faults will control abutment design

F Irregularity/Roughness

Descriptive

Shape: Roughness:

Stepped Rough

Undulating Smooth

Planar Slickensided

Semi Quantitative - Joint Roughness Coefficient (JRC)

Rough Undulating JRC 20 e.g. Tension Joints

Smooth Undulating JRC 10 e.g. Foliation/Joints

Smooth Planar JRC 5 e.g. Bedding

Discontinuity Roughness Measurement

Quantitative approach

G Wall Rock Strength - (Joint Compressive Strength - JCS)

- Estimate Compressive Strength Based on:
 - Field Classification (ISRM) Table 2-1: Range:

Extremely weak (0.25-1MPa)
Extremely strong (>250 MPa)

- Field Testing (Point-Load Test or Schmidt Hammer)
- Laboratory Testing

H Weathering

- ISRM Weathering Classification Table 2-2
 - Fresh
 - Slightly weathered
 - Moderately weathered
 - Highly weathered
 - Completely weathered
 - Residual soil

I Aperture

- Measure Directly, Table 2-1: Range:
 - Very tight (<0.1 mm)</p>
 - Cavernous (>1000 mm)

J Filling/Width

- Measure Width (Table 2-2)
- Characterize Wall Rock
- Infilling Characteristics
 - Mineralogy
 - Particle Size
 - Water Content
 - Stiffness

Controlling structure for slope design Rocky Point Viaduct, OR

K Seepage

- Document According to Field Sheets
 - Tight and dry
 - Dry
 - Dry, rust staining
 - Damp
 - Seepage, drops
 - Continuous flow

L Number of Joint Sets

- Number of Systematic Joint Sets
 - Often three orthogonal sets
 - Maximum four or five sets
 - Record faults and shears separately from joints and bedding

M Block Size/Shape

Use code on Data Collection Sheet

SHAPE

- Blocky
- Tabular
- Columnar
- Shattered

SIZE

Very large (>8 m³)

Large (0.2 – 8 m³)

Medium (0.008-0.2 m³)

Small $(0.0002 - 0.008 \, \text{m}^3)$

Very small (<0.0002 m³)

Refer to Figure 2-2 of Reference Manual on page 2-6

Geotechnical Mapping

- Line Mapping
 - Documenting All Structures that Intersect a Tape or Painted Scan Line
- Window (Cell) Mapping
 - Document All Structures Within a Representative Areas or "Windows"

Geotechnical Drilling

Diamond Drilling

- Triple Tube or Double Tube with a Split Inner Tube
- Geotechnical Logs RQD, Recovery, Fracture Frequency, Joint Angle (Cornerstone of Communication !!!)
- Core Photographs & Core Handling
- Structural Orientation Data from Drilling
 - Oriented Coring Clay Impression Method
 - Borehole Imaging

Core Photographs

Core Orientation – Reference Line

Borehole Televiewer Logging

Core Orientation - Borehole Camera

Comparable section of core quality and televiewer data.

Borehole Televiewer Logging

